从最早工匠使用工具开始,科技进步的物质形式基本体现在了制造发展的过程,将科技应用到制造的过程最能体现人类理性应用工具和技术等先进手段追求利润最大化和效率最高的伟大境界。所以,按照科技发展的逻辑推断,制造必然向信息化、智能化阶段发展。因此有了下面三个名词:
美国的工业互联网用互联网的手段把研发、采购、生产、营销到客户服务的整个链条打通,把整个水平方向全部打通。
德国的工业4.0更注重的是生产的环节,在生产领域深扎,在生产制造装备或生产的技术上面进行更深的挖掘。
“中国智造2025”实际是吸收了美国的工业互联网和德国的工业4.0两个方面的经验,着力做成一个“T”型结构,一方面在整个产业链上从研发一直到客户服务的水平状态,另一个方面就是在生产的领域深扎下去,提高整个的智能制造水平和管理水平。
1全连接
缺少任一节点的连接,都有可能影响全面自动化的实现。这里面会涉及多少连接呢?一辆摩托车,仅发动机就有250多个零件,至于汽车约有30000个左右。
对于制造过程,一个螺丝都不能少,智能制造的连接也是一样。除了这些,其他相关信息包括资金量、管理信息流、物流信息流、服务信息流等各个相关环节需要全面连接。
在信息化阶段,ERP系统最大的问题点是逆向流程实现困难。到了智能化阶段除了连接点,还需要在全面连接点中设置双向监控点和生产管理连接点。
基于时时海量信息传递和多节点控制的需求,需要单独的连接和数据流转通道以保证整个过程不断点、不丢包,顺利完成全过程。另外,是否有智能产品是与用户建立直接连接的前提。
2全控制
智能制造将数据流转作为核心,连接全部制造和相关环节,中间的全部过程都似“暗箱”般,非常需要随时知道发生了什么并予以人为纠偏和预警干涉。每个节点的交互设计和计算能力是实现全控制的基础。除了对环节的控制,还需要对智能设备(包括工业机器人)进行监测和控制。
智能制造的生产线上将由多个智能设备来替代人类完成执行工作。人与机器的配合及人对机器的控制和管理也是智能制造挑战中比较容易出现掌控外事故的问题点。
3资源整合
智能制造阶段,主要存在的工厂形式为大的制造平台和小型个性化工作室。大平台可以满足小批量的定制化需求,小工作室更多体现在与用户的更直接、更短平快的连接。
至于智能供应链也将出现大的供应链整合平台,针对不同个性化需求提供快速、“零库存”的供应。智能制造系统化工程需整合供应链、生产、物流、服务平台、营销资源等等,才能最大化的实现智能制造的自动化及产能最大化。
智能制造既然有如此高的要求,从以上可以总结出来两条实现路径:一条是作为龙头企业,自行尝试然后把成功经验复制到行业内其他企业,推动行业整体进步,从而实现更大范围的智能制造。
另一条是行业内主要企业把相关资源整合在一起,共同尝试将所有相关环节集中在这一个平台上操作,作为独立的OEM中心存在。不难推断,产业联盟和第三方提供相关解决方案及数据服务或将成为必不可少的存在。
综上所述,智能制造即使还没实现也是符合社会经济发展规律的,本来就是一件任重道远的事儿。另外,所谓挑战对于不同发展阶段和数字化程度不同的企业意义不太一样,不能一概而论。
4数据采集及整合应用
企业内外大小数据的采集及整合应用是智能制造效率的基础。智能产品相关数据的获取也将是产品升级的基础数据。数据采集及整合能力,尤其是外部环境数据、行业数据和用户数据的获取整合能力最耗费成本,也最能体现企业资源整合实力。
智能制造对于企业数据能力的要求包括数据入口掌控数量、数据采集方式(众包之后新的模式)、数据中心规划和实现能力、数据计算资源以及智能算法的驾驭能力等等。
5
数据传递通道与实时交互
多节点交互、监测和控制,以及跨行业、跨领域、跨产品等多场景的要求,需要建立新的、系统性的、统一的协议标准,除了整体架构和基础物联网外,至少先从同一行业(领域)开始细化和建立统一标准。
另外,无论是从带宽(实时数据承载量)还是网速要求,目前的网络资源显然支持不了智能制造的发展要求。现在大家把希望寄予5G,寄望于物联网新的协议标准。还能说什么呢,共同期待吧。
6.数据模型的多场景创建与打通
尽管大数据和智能算法数量是有限的,真正考验智能制造的是基于不同场景和条件的数据架构搭建和模型应用,以及多模式和场景下的数据及数据模型打通。
任何事情都会有偏差,即使没有偏差,也需要根据外部的变化进行及时调整,完全依赖机器对数据的解读和归纳也不太可能。因此,还需要能够洞察行业发展和业务路线的专业分析师对规则进行调整、优化、升级和废除。
未来,数据将成为智能制造的生命线,数据收集、存储、快速调拨、模型搭建、规则创建及整合、计算和应用,每个环节都与连接、控制和自动化息息相关。
不管是德国提出的工业4.0,还是美国提出的工业互联网,其产业升级的关键均在通过大数据技术的应用,来合理安排生产,进而提高效率、降低成本。虽然从技术上来看,我国与国际先进水平还存在几年的差距,但巨大的市场需求是我国发展大数据技术和产业的优势。我国人口基数大,互联网人口也异常庞大,同时我国工业体系完善并且体量巨大,这造就了一个很大的市场,可以由市场来带动技术和产业的发展。
如何抓住自身优势,直面诸多挑战,运用好大数据助力我国制造产业升级,是我国智能制造实现弯道超车的关键所在。

共有条评论 网友评论