“工程机械领域,不同于快消品,重工机械设备更新周期慢且平稳是其最大的特点。在基础建设发展非常良好的时期,工程机械行业的发展非常好。但如果遭遇国家经济增速下行,则也会造成生产能力过大、存量设备过多等问题……”已在中联重科供职10年的周志忠博士平静地向我们介绍了工程机械领域现状。如何改变这样的现状?除了持续不断苦炼内功、创新产品,中联重科还希望通过大数据驱动来促进转型,聚焦于后服务市场。
工程机械市场转型期:挑战与机遇并存工程机械市场进入转型期以来,挑战与机遇并存。中联重科做为装备制造企业,业务包括工程机械板块、后来收购了农机板块,并发展金融板块。其中工程机械板块所占的比重非常大,也是中联重科最早发家的一个板块。
中联重科麓谷工业园一景
周志忠博士向我们介绍,工程机械板块最近几年一直处于相对低迷的状态,主要原因有以下三大方面:
其一:在基础建设发展非常良好的时期,工程机械行业发展也非常好。
其二,随着施工行业对施工安全、效率及成本管控的重度越来越高,设备厂商就要在强化设备智能化水平的同时还要具备数据分析处理的能力。
其三,工程机械市场需求持续下滑,不能再凭借主机销售的收入来支撑整个企业的发展。
通过数据驱动促进转型但数据来源于哪?
目前整个后市场中工程机械设备有七百多万台,面对这么多的存量设备,要如何很好的服务它们呢?中联重科希望通过数据驱动促进向高端智能服务的转型。
当谈及工业大数据的来源及与互联网数据的区别,周志忠博士告诉我们,对于工业企业而言,也有一部分互联网的数据,如网上商城、微信应用中采集到的用户行为相关的数据,但更多的是围绕自身产品,从研发、生产到销售、服务,这样一个完整系列产品数据,这些数据是我们非常重要、也是核心的数据来源。中联重科数据来源主要包含如下3类:物联网数据、内部核心业务系统数据、外部应用平台数据。
中联重科工程机械物联网云平台监控室
中联重科的工业大数据应用技术方案为进一步提升设备的智能化水平,丰富设备数据采集维度,提升设备数据采集和预处理能力,中联重科研发了新一代 4.0 产品和智能网关。
中联重科产品 4.0 是以“模块化平台+智能化产品”为核心,深度融合传感、互联等现代技术,研发性能卓越、作业可靠、使用环保、管控高效的智能化产品。通过相关建模分析为客户提供包括设备实时定位、工况监控、油耗分析、设备异常分析、故障预警、工作运营统计在内的高附加值信息服务。
打通多方数据,形成统一的工业大数据分析平台,对内辅助科学决策,对外提供智能化服务。
中联重科工业大数据平台架构图
工业大数据平台整体采用成熟的Hadoop分布式架构进行搭建。基于Cloudera CDH的发行版,中联重科从2015年底开始部署,同时进行相应的大数据开发工作。
平台通过流式处理架构,满足高时效性的数据分析需求;通过分布式运算架构,满足对海量数据的离线深度挖掘。前端通过统一接口层以多种通用格式对外提供数据分析服务。
考虑到大数据平台汇集了企业内外部多方敏感数据,为保证数据安全,平台引入了企业级数据治理组件,实现统一的元数据管理、数据质量控制、数据溯源、数据操作权限管控、数据脱敏及数据使用审计功能,并贯穿数据存储和应用的全过程。
拥抱开源 分析大数据技术未来的挑战当问及为什么会选择Hadoop,周志忠博士表示:开源的生态环境中有大量人才提供贡献,我们认为比单一企业开发的环境更有生命力、更强壮。
第一:采用开源技术对团队的技术能力要求稍高。
第二:运营过程中的技术难点稍多一些。因此,我们选择开源的同时也采购了Cloudera的企业级服务,作为我们整个平台运营的保障。
第三:开源有很多问题,如很多组件之间的适配是不是最优、及参数涉及到一些复杂的问题。
所以采用发行版、企业服务的支持,就不需要把重心放在运维平台、系统的层面,而是更多的聚焦在业务分析、获得业务扩展等可创造数据价值的层面。
当谈及对大数据技术行业未来的期许,周志忠博士说:“目前从支撑应用的角度,大数据技术已足够。最主要的难点在于业务应用场景与现有技术、算法如何最佳地匹配。中联重科也在尝试机器学习方面的一些应用,如设备的健康指数评估,怎样通过不同维度、不同传感数据及公司内部的数据,建立模型。从模型角度,相应算法也能够支撑,但关键问题在于,数据是不是全备且准确,数据响应是不是及时等”。
受访人简介:
周志忠博士,现任中联重科信息化首席架构师。2003年,成为北航博士后,偏重于BI商业智能。在对外经贸大学信息学院任教3年期间,从事商业智能、分析。2007年,加入中联重科任首席架构师,主要任务是信息化建设。2015年专注于大数据领域的相关工作。

共有条评论 网友评论